Section 8.1 Quadratic Equations
Example 4 page 502
$4 x^{2}+9=0$
$4 x^{2}=-9$
$x^{2}=-\frac{9}{4}$
$\sqrt{x^{2}}=\sqrt{-\frac{9}{4}}$
$x= \pm \frac{3}{2} i \quad$ Notice that we got 2 solutions!
Example $4 \frac{1}{2}$
A
$(x-3)^{2}=25$
$x^{2}-6 x+9=25$
$x^{2}-6 x-16=0$
$(x-8)(x+2)=0$
$x=8 \quad x=-2$
$x \in\{8,-2\}$

$$
\begin{gathered}
B \\
(x-3)^{2}=25 \\
\sqrt{(x-3)^{2}}=\sqrt{25} \\
x-3= \pm 5 \quad \star \\
x=3 \pm 5 \\
x=8 \quad x=-2 \\
x \in\{8,-2\}
\end{gathered}
$$

\star Remember this is a shortcut from $|x-3|=5$
Example 5 page 502

$$
\begin{aligned}
& (x-2)^{2}=7 \\
& \sqrt{(x-2)^{2}}= \pm \sqrt{7} \\
& x-2= \pm \sqrt{7} \\
& x=2 \pm \sqrt{7}
\end{aligned}
$$

Look at the check to be sure it was properly solved:

$$
\begin{array}{ll}
(x-2)^{2}=7 & (x-2)^{2}=7 \\
(2+\sqrt{7}-2)^{2}=7 & (2-\sqrt{7}-2)^{2}=7 \\
(\sqrt{7})^{2}=7 & (-\sqrt{7})^{2}=7 \\
7=7 & 7=7
\end{array}
$$

Example 6 page 503
Solve:

$$
\begin{aligned}
& x^{2}+6 x+8=1 \\
& (x+4)(x+2)=1
\end{aligned}
$$

But nobody cares that $x^{2}+6 x+8$ factors because the equation says it is equal to ONE (i.e. It needs to be equal to zero!)

What about:

$$
\begin{aligned}
& x^{2}+6 x+9=2 \\
& x^{2}+6 x+7=0 \quad \text { Nope. Doesn't factor! } \\
& (x+)(x+)=0
\end{aligned}
$$

Notice $x^{2}+6 x+9=(x+3)^{2}$

$$
\begin{aligned}
& x^{2}+6 x+9=2 \\
& (x+3)^{2}=2 \\
& \sqrt{(x+3)^{2}}= \pm \sqrt{2} \\
& x+3= \pm \sqrt{2} \\
& x=-3 \pm \sqrt{2}
\end{aligned}
$$

This method worked because we had a perfect square on the left side.
If we do not have that situation, we can create it by using the method called "Completing the Square"

Example 7

$$
x^{2}+6 x+4=0
$$

$$
x^{2}+6 x=-4 \quad \text { we move the constant to the right side }
$$

We need the missing constant on the left. We want to end up with a perfect square. The quickest method for determining that constant is to take "half of the coefficient of "x-term" and squaring it. Half of 6 is 3 . Squared is 9 .
We will add 9 to both sides of the equation to maintain equality. Thus:

$$
\begin{aligned}
& x^{2}+6 x+9=-4+9 \\
& (x+3)^{2}=5 \\
& x+3= \pm \sqrt{5} \\
& x=-3 \pm \sqrt{5}
\end{aligned}
$$

Let's check to show that these really work.

$$
\begin{gathered}
-3+\sqrt{5} \quad(-3+\sqrt{5})^{2}+6(-3+\sqrt{5})+4=0 \text { in original equation. } \\
9-6 \sqrt{5}+5-18+6 \sqrt{5}+4=0 \\
0=0
\end{gathered}
$$

The check for $-3-\sqrt{5}$ works in the same manner.
Example 9 page 505

$$
\begin{aligned}
& x^{2}+5 x-3=0 \\
& x^{2}+5 x+=3 \\
& x^{2}+5 x+\left(\frac{5}{2}\right)^{2}=3+\frac{25}{4} \\
& \left(x+\frac{5}{2}\right)^{2}=\frac{37}{4} \\
& x+\frac{5}{2}=\frac{ \pm \sqrt{37}}{2} \\
& x=\frac{-5 \pm \sqrt{37}}{2}
\end{aligned}
$$

Example 10 page 506
$3 x^{2}+7 x-2=0 \quad$ Notice the leading coefficient is a 3!
We must have the leading coefficient a one.
We multiply the entire line by one-third to get:

$$
\begin{aligned}
& x^{2}+\frac{7}{3} x-\frac{2}{3}=0 \\
& x^{2}+\frac{7}{3} x \quad=\frac{2}{3} \\
& x^{2}+\frac{7}{3} x+\left(\frac{7}{6}\right)^{2}=\frac{2}{3}+\frac{49}{36} \quad \text { Notice } \frac{2}{3}=\frac{24}{36} \\
& \left(x+\frac{7}{6}\right)^{2}=\frac{73}{36} \\
& x+\frac{7}{6}= \pm \frac{\sqrt{73}}{6} \\
& x=\frac{-7 \pm \sqrt{73}}{6}
\end{aligned}
$$

